endo-Selective allylation at the benzylic centre of a $\mathrm{Cr}(\mathrm{CO})_{3}$ complexed aromatic ring

Sunil K. Mandal \dagger and Amitabha Sarkar *
Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune-411 008 India

Received (in Cambridge, UK) 12th October 2001, Accepted 23rd January 2002
First published as an Advance Article on the web 8th February 2002

In the presence of TiCl_{4}, allyllithium adds to tricarbonylchromium complexes of 2-arylidene-1-tetralone and 2-aryl-ideneindan-1-one ($\mathbf{1 a - c}$) to afford endo-1,2-adducts ($\mathbf{2 a - c}$) exclusively. Subsequent oxy-Cope rearrangement delivers the allyl group stereospecifically along the endo-face to the sterically hindered benzylic position of the metal-
complexed ring.

Introduction

In arene-tricarbonylchromium complexes, the three CO ligands extend well beyond the periphery of the aromatic ring, and sterically hinder the approach of reagents from the same face of the molecule (exo-selectivity). ${ }^{1}$ This aspect has been extensively used in the context of diastereoselective synthesis, ${ }^{2}$ enantioselective synthesis, ${ }^{3}$ design of chiral ligands ${ }^{4}$ and total synthesis of target natural products. ${ }^{5}$ By contrast, examples of endoselective functionalizations are rare. ${ }^{6}$ We have recently reported that out-of-plane coordination of a strong Lewis acid like TiCl_{4} can predictably reverse normal preference for exo-selectivity in $\mathrm{Ar}-\mathrm{Cr}(\mathrm{CO})_{3}$ complexes and endo-adducts are exclusively formed even three carbons away from the metal-complexed ring. ${ }^{6 a-c}$ However, an endo-selective addition to the benzylic site of a complexed arene ring still remains a challenge owing to its proximity with the bulky $\mathrm{Cr}(\mathrm{CO})_{3}$ group.

In the present study we examined a set of substrates where the carbonyl function is separated from the complexed arene ring by a double bond. We report that allyllithium, as a prototypical strong nucleophile, adds to this carbonyl function predominantly from the exo-face in the absence of a Lewis acid. In the presence of a Lewis acid like TiCl_{4}, we observed that the addition is completely endo-selective. This 'inverted' selectivity has been used to introduce the allyl group in an endo-selective manner to the sterically protected benzylic site by a subsequent intramolecular rearrangement. These experiments reaffirm that Lewis acid-induced endo-selectivity of nucleophilic addition is an effective way to achieve stereodivergent functionalization on arene-chromium complexes.

Results and discussion

The model substrates $\mathbf{1 a - c}$ were readily prepared by a ClaisenSchmidt condensation of 1-tetralone \ddagger or indan-1-one with an ortho-substituted aromatic aldehyde with a pendant $\mathrm{Cr}(\mathrm{CO})_{3}$ group (Scheme 1). In a typical procedure, ethanolic KOH was added dropwise to a solution of tetralone (or indanone) and the aldehyde complex in ethanol at room temperature. The reactions were complete in 2.5-3.0 hours (TLC).

The chemical shift of the olefinic proton ($7.50-7.80 \mathrm{ppm}$) is indicative of a trans-olefin geometry. ${ }^{6 a}$ The syn-orientation of

[^0]

Scheme 1
the ortho-substituent (R) with respect to the olefinic proton (as depicted in Scheme 1) was deduced with the help of NOE difference spectra. The extended planar arrangement of the π-system is evident from the deep red color of the complexes.
In these molecules, the peri-hydrogens $\left(\mathrm{H}_{\mathrm{p}}\right.$ and $\left.\mathrm{H}_{\mathrm{o}}\right)$, hinder in-plane approach of the Lewis acid towards the oxygen lone pair of the ketone carbonyl group, and this forces TiCl_{4} to seek out-of-plane coordination ${ }^{7}$ with the $\mathrm{C}=\mathrm{O}$ group from the less crowded exo-face. Therefore, for conjugate addition, a nucleophile must approach the benzylic carbon from the endo-face for the reaction to occur. But this site is protected from endo-attack by the steric bulk of the $\mathrm{Cr}(\mathrm{CO})_{3}$ group in the immediate vicinity (Chart 1). In contrast to previously reported ${ }^{6 a}$ structurally similar substrates, these compounds do not undergo Hosomi-Sakurai allylation (allyltrimethylsilane and TiCl_{4} at $-78{ }^{\circ} \mathrm{C}$ for 12 h , followed by $-20^{\circ} \mathrm{C}$ for 8 h). However, a nucleophilic reagent could still approach the carbonyl function from the endo-face.

When allyllithium in THF was added to the complexes 1a-c in dichloromethane ${ }^{8}$ in the presence of 2.2 equiv. $\mathrm{TiCl}_{4},{ }^{9}$ the expected 1,2 -adducts ($\mathbf{2 a - c}$) formed as a single diastereoisomer ${ }^{10}$ (Scheme 2). The crystal structure ${ }^{11 a}$ of a representative product $\mathbf{2 a}$ confirmed that the allylation was endo-selective.

Anion-assisted oxy-Cope rearrangement ${ }^{12 a-c}$ of the alcohols $\mathbf{2 a - c}$ with potassium hydride in ether furnished the ketone complexes 3a-c. Since the original attachment of the allyl

Chart 1

Scheme 2

group was from the endo-face of the molecule in $2 \mathbf{a}-\mathbf{c}$, the rearranged products $\mathbf{3 a - c}$ have the allyl groups appended to the benzylic sites (of the complexed aromatic ring) from the endo-face ${ }^{12 d}$ (Scheme 2).

Formally, these are products of endo-selective conjugate addition of allylmetal to enones $\mathbf{1 a - c}$. This is a notable achievement, since direct endo-allylation is not easily effected at the benzylic position of a complexed arene. An allyl appendage is a versatile latent functional group that can be unmasked in a variety of ways at the desired stage of synthesis. ${ }^{13}$ An endo-selective strategy, over and above, offers a clear advantage of added flexibility in synthetic design with these complexes.

In order to strengthen the stereochemical arguments and at the same time develop a stereodivergent strategy, the exoallylated products were synthesized by omitting Lewis acid in the first step. Although conjugate addition by a small nucleophile like nitromethane at ambient temperature yielded exclusively exo-adducts at a center three carbons removed from the complexed arene ring on a similar substrate, ${ }^{14}$ these allylmetal additions were not equally efficient-the minor stereoisomer ($\mathbf{2 a} \mathbf{- c}$) from endo-attack was formed to the extent of $13-15 \%$ even at low temperatures (Scheme 3). The isomers $\mathbf{4 a - c}$ and 2a-c were readily separated by column chromatography, and crystal structure determination of $\mathbf{4 a}$ confirmed its stereochemical identity. ${ }^{11 b}$ Subsequent rearrangement of the major stereoisomers $\mathbf{4 a - c}$ provided the ketones $5 \mathbf{5 a - c}$ where the allyl group is appended from the exo-face (Scheme 3).

Base-catalyzed equilibration (Scheme 4) of ketone 3a yielded a minor isomer $\mathbf{3 a} \mathbf{a}^{\prime}$ and $\mathbf{5 a}$ yielded a minor isomer $\mathbf{5 a}^{\prime}$. Thus, the pair 3a-3a' and 5a-5a' must be epimeric at C-2 (adjacent to the carbonyl carbon). This would imply that ketones $\mathbf{3 a - c}$ must be epimeric with 5a-c at $\mathrm{C}-3$, that is, the new $\mathrm{C}-\mathrm{C}$ bond forming

Scheme 3

reaction at C-3 proceeded with opposite face-selectivity in the presence and absence of Lewis acid. ${ }^{15}$
To sum up, the two reaction sequences depicted in Scheme 2 and Scheme 3 are essentially stereodivergent routes to complementary stereoisomers obtainable from the same substrate complex. Allyllithium was selected as the representative nucleophile since the products were also suitable for a subsequent anionic oxy-Cope rearrangement. It was thus possible to introduce an allyl group to the benzylic site of an arene chromium complex selectively and predictably from the sterically encumbered endo face-an interesting feat that is unattainable by a direct approach. We admit that a specifically designed set of reactants was used in this study to promote unambiguously the diastereofacial discrimination in the nucleophilic allylation reaction. Yet, these results underscore the importance of out-of-plane coordination of Lewis acid to a carbonyl function in the modification of the steric course of a reaction, a strategic
variation that can be adapted to many sterically biased π systems.

Experimental

All reactions were performed under an inert atmosphere of argon, using freshly distilled, degassed solvents. Diethyl ether and THF were freshly distilled over sodium benzophenone ketyl. Dichloromethane was freshly distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. Aromatic aldehydes were purchased from Aldrich, USA, and used as received. For descriptions of analytical instruments, spectral data formats and standard calibrations, see ref. 16. All reactions were performed on a $0.5-2.0 \mathrm{mmol}$ scale. Metal complexes were crystallized from dichloromethane-hexane.

Preparation of enones 1a-c

Following a reported ${ }^{17}$ procedure all three enones ($\mathbf{1 a - c}$) were prepared from 1-tetralone or indan-1-one (2.0 mmol) and $\mathrm{Cr}(\mathrm{CO})_{3}$ complexed aromatic aldehydes ${ }^{18}(2.0 \mathrm{mmol})$ and KOH (2.2 mmol) using Claisen-Schmidt condensation.

Complex 1a. Red solid; mp $145{ }^{\circ} \mathrm{C}$; yield $82 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.90-3.20(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{t}, 1 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.62(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.71$ (d, 1H, $J=6.6 \mathrm{~Hz}), 7.20-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, 7.55 (t, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}$), 7.70 (br s, 1H), 8.15 (d, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 12.72,19.34,27.87,28.95,63.36,90.57$, $92.38,96.72,102.34,107.96,127.40,128.51,129.50,133.14$, 133.66, 138.46, 143.30, 186.63, 232.97; IR $\left(\mathrm{CHCl}_{3}\right): 1950$, 1860(br), $1660 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Cr}$: C: 63.00, H: 4.00, Found C: 62.86, H: 4.03%.

Complex 1b. Red solid; mp $135{ }^{\circ} \mathrm{C}$; yield 79%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.85-3.25(\mathrm{~m}, 4 \mathrm{H}), 5.21-5.29(\mathrm{~m}, 2 \mathrm{H})$, $5.40-5.55(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $7.46-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 19.51,27.52,29.00,89.33,93.14,93.64$, $95.15,103.02,109.44,127.12,127.45,128.57,131.23,133.01$, 133.80, 138.90, 143.29, 186.62, 232.62; IR $\left(\mathrm{CHCl}_{3}\right): 1935,1850$, $1655 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Cr}$: C: 65.79, $\mathrm{H}: 4.17$, Found C: 65.73, H: 4.30%.

Complex 1c. Red solid; mp $170^{\circ} \mathrm{C}$ (dec); yield 87%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.00(\mathrm{t}, 1 \mathrm{H}$, $J=6.3 \mathrm{~Hz}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.75(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $6.15(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.55-7.70$ (m, 2H), 7.77-7.82 (m, 1H), $7.95(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 34.02,58.24,76.18,87.02,93.05,96.40,97.50,126.25$, $127.79,128.38,129.88,136.83,138.01,140.06,145.14,151.52$, 185.59, 234.64; IR $\left(\mathrm{CHCl}_{3}\right): 1960,1865,1660 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 62.17, \mathrm{H}: 3.62$, Found $\mathrm{C}: 62.01$, H: 3.71\%.

TiCl_{4} mediated allyllithium addition to enones ($1 \mathrm{a}-\mathrm{c}$)

To a solution of complexed enone ($\mathbf{1 a - c}$), ($n \mathrm{mmol}$) in dichloromethane ($20 n \mathrm{~mL}$), titanium tetrachloride ($2.2 n \mathrm{mmol}$) was added dropwise at $-90^{\circ} \mathrm{C}$ and stirred for 15 min . Allyllithium ${ }^{19}$ ($1.2 n \mathrm{mmol}$) in THF was added dropwise with stirring at the same temperature. After completion of the reaction (TLC, 30 min), the reaction mixture was quenched with degassed methanol at $-90^{\circ} \mathrm{C}$, followed by addition of water at room temperature, and finally extracted with dichloromethane. The crude mixture of products obtained after evaporation of solvent was separated by flash column chromatography. For details about isolated yield, see Scheme 2.

Complex 2a. Yellow solid; mp $128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $2.23(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.82-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $4.91(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.05-5.29(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{t}, 1 \mathrm{H}, J=$ $6.5 \mathrm{~Hz}), 5.62(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.70-6.01(\mathrm{~m}, 1 \mathrm{H}), 6.58$
($\mathrm{s}, 1 \mathrm{H}$), $7.05(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.15-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 25.48,29.71,30.63,48.53$, $55.69,75.25,85.65,93.56,97.18,97.60,116.25,118.26,126.12$, 126.56, 127.16, 127.80, 133.35, 135.60, 141.29, 142.75, 146.36, 233.39; IR (CHCl_{3}): 3400-3600(br), 1940, $1850(\mathrm{br}) \mathrm{cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}$: C: 65.15, H: 4.97, Found C: 64.98, H: 4.99\%.

Complex 2b. Yellow solid; mp $110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.50-2.71(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.88(\mathrm{~m}$, $1 \mathrm{H}), 2.89-3.11(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.80(\mathrm{~m}, 4 \mathrm{H}), 5.81-5.50(\mathrm{~m}, 2 \mathrm{H})$, $5.70-6.00(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 19.41$, $25.45,30.16,48.75,75.29,90.51,93.26,94.11,96.11,107.55$, $108.99,118.93,119.06,126.29,126.88,127.50,128.10,133.28$, 135.64, 142.65, 147.18, 233.62; IR (CHCl_{3}): 3500-3600(br), 1935, 1850(br) cm^{-1}; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cr}$: C: 67.60, H: 5.16, Found C: 67.67, H: 4.99\%.

Complex 2c. Yellow solid; mp $110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 2.28 ($\mathrm{s}, 1 \mathrm{H}$), $2.65(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.70-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $4.95-5.20(\mathrm{~m}, 4 \mathrm{H}), 5.45-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $6.78-6.82(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 29.90,35.71,47.88,56.11,74.45,85.51$, 89.38, 93.41, 95.32, 116.76, 119.67, 123.88, 124.71, 127.63, $128.86,132.45,139.38,141.34,146.07,150.74,233.42$; IR $\left(\mathrm{CHCl}_{3}\right): 3400-3600(\mathrm{br}), 1940,1835 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 64.48, \mathrm{H}: 4.67$, Found C: 64.40, H: 4.55%.
Addition of allyllithium to enones (1a-c) in absence of Lewis acid
To a solution of complexed enone ($\mathbf{1 a - c}$), ($n \mathrm{mmol}$) in THF ($20 n \mathrm{~mL}$), allyllithium ($1.2-1.4 n \mathrm{mmol}$) in THF was added dropwise with stirring at $-90{ }^{\circ} \mathrm{C}$. After completion of the reaction (TLC, 30 min), the reaction mixture was quenched with degassed methanol at $-90^{\circ} \mathrm{C}$, followed by addition of water at room temperature, and finally extracted with dichloromethane. The crude mixture of products obtained after evaporation of solvent was separated by flash column chromatography. For isolated yield and product ratio see Scheme 3.

Complex 4a. Yellow solid; mp $122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $2.25(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.15$ $(\mathrm{m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.00(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 5.05-5.23(\mathrm{~m}$, $3 \mathrm{H}), 5.50(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 5.70-5.95$ $(\mathrm{m}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 25.86,30.41,48.66,56.17,74.93$, 75.84, 85.92, 93.44, 96.79, 98.29, 116.70, 118.64, 126.59, 126.98, $127.58,128.25,133.65,136.10,141.26,143.08,147.28,233.55$; IR (CHCl_{3}): 3400-3600(br), 1940, 1850(br) cm ${ }^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 65.15$, $\mathrm{H}: 4.97$, Found C: 64.83, H: 4.94%.

Complex 4b. Yellow solid; mp $140{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.29-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H})$, $2.77-3.17(\mathrm{~m}, 3 \mathrm{H}), 5.00-5.25(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.48(\mathrm{~m}, 4 \mathrm{H}), 5.70-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.20-7.48$ $(\mathrm{m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 19.64$, $25.33,30.48,48.35,75.79,90.77,93.24,94.22,95.16,108.17$, $108.69,118.34,119.23,126.41,126.90,127.52,128.20,133.58$, $135.60,143.01,147.71,233.66$; IR (CHCl_{3}): $3400-3600(\mathrm{br})$, 1920, 1825(br) cm ${ }^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cr}$: C: 67.60, H: 5.16, Found C: 67.82, H: 5.08%.

Complex 4c. Yellow solid; mp $122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.38$ $(\mathrm{s}, 1 \mathrm{H}), 2.55-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.95-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.90-5.10(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $5.45-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.15-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 27.09, 35.40, 47.55, 56.14, 75.05, 83.93, 85.89, 93.02, 95.79, 116.31, 118.73, 123.93, 124.74, 127.42, 128.86, 132.93, 139.51, $140.90,145.83,152.02,233.45$; IR $\left(\mathrm{CHCl}_{3}\right): 3400-3600(\mathrm{br})$,

1930, $1836 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 64.48, \mathrm{H}$: 4.67, Found C: 64.72, H: 4.58%.

Oxy-Cope rearrangement of $\mathbf{1 , 2}$-allyl adducts

To a solution of 1,2-allyl adduct ($\mathbf{2 a - c}$ and $\mathbf{4 a - c}$) ($n \mathrm{mmol}$) and 18-crown-6 (0.1 nmmol) in diethyl ether (20 nmL), suspension of potassium hydride (1.1 n mmol) in ether was added dropwise with stirring at $0{ }^{\circ} \mathrm{C}$. It was then stirred at room temperature until completion (TLC, 2.5 h). It was quenched with degassed methanol at $0{ }^{\circ} \mathrm{C}$ and finally extracted with ether. Residue obtained after evaporation of solvent was purified by flash column chromatography.

Complex 3a. Yellow solid; mp $65{ }^{\circ} \mathrm{C}$; yield 77%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.90-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.88-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.85-$ $5.15(\mathrm{~m}, 4 \mathrm{H}), 5.48(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.69(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $5.75-6.05(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 24.57, 29.45, 34.97, 35.83, 52.25, 55.99, 73.68, 82.51, 85.24, 93.58, 95.27, 105.60, 116.97, 126.91, 127.83, 128.79, 133.44, 137.02, 141.40, 143.72, 197.64, 233.41; IR $\left(\mathrm{CHCl}_{3}\right): 1964,1867,1670 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 67.16, \mathrm{H}: 4.97$, Found C: 65.19 , H: 4.86\%.

Complex 3b. Yellow solid; mp $97{ }^{\circ} \mathrm{C}$; yield 78%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.90-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.50(\mathrm{~m}$, $3 \mathrm{H}), 2.72-3.10(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.80-5.10(\mathrm{~m}, 2 \mathrm{H})$, $5.10-5.31(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.65-5.90(\mathrm{~m}, 1 \mathrm{H})$, 7.15-7.40 (m, 2H), $7.49(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 18.98,22.56,29.50,29.85,34.22$, $37.23,53.08,90.01,92.60,93.79,108.56,114.95,117.05,127.04$, 127.97, 128.80, 132.75, 133.69, 136.62, 143.58, 196.83, 233.51; IR $\left(\mathrm{CHCl}_{3}\right): 1962,1860,1667 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22^{-}}$ $\mathrm{O}_{4} \mathrm{Cr}: \mathrm{C}: 67.60, \mathrm{H}: 5.16$, Found C: 67.66, H: 5.25%.

Complex 3c. Yellow solid; mp $121{ }^{\circ} \mathrm{C}$; yield 78%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.05-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.05-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.85-5.20(\mathrm{~m}, 4 \mathrm{H})$, $5.40-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.60-6.00(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $7.50-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 29.48, 30.92, 39.46, 53.86, 56.30, 75.41, 88.19, 92.53, 96.66, 101.32, 117.32, 117.97, 120.67, 121.24, 128.56, 135.14, 138.13, $140.00,156.80,205.58,233.32$; IR (CHCl_{3}): 1965, 1860, 1660 cm^{-1}; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Cr}$: C: 64.48, H: 4.67, Found C: 64.51, H: 4.71%.

Complex 5a. Yellow solid; mp $110{ }^{\circ} \mathrm{C}$; yield 80%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.95-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.77-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.20-4.39(\mathrm{~m}$, $1 \mathrm{H}), 4.75-5.15(\mathrm{~m}, 4 \mathrm{H}), 5.55-5.90(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.60(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $24.39,29.33,33.03,34.54,55.48,55.98,72.91,83.54,95.54$, $99.44,106.47,117.02,126.68,127.78,128.99,131.93,132.66$, 136.56, 142.62, 144.27, 197.79, 233.70; IR (CHCl_{3}): 1960, 1865, $1672 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 67.16, \mathrm{H}: 4.97$, Found: C: 66.94, H: 5.01\%.

Complex 5b. Yellow solid; mp $110{ }^{\circ} \mathrm{C}$; yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.80-3.18(\mathrm{~m}$, $4 \mathrm{H}), 4.70-4.95(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 5.15(\mathrm{t}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz}), 5.30-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.75(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~d}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz}), 7.05-7.55(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 20.17,29.39,29.92,30.70,38.98,43.24$, $53.53,90.43,92.77,94.84,96.41,110.10,117.28,118.12,127.03$, 127.80, 128.77, 133.69, 135.97, 143.85, 199.13, 233.77; IR $\left(\mathrm{CHCl}_{3}\right): 1965,1860,1660 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cr}$: C: 67.60, H: 5.16 , Found C: 67.56, H: 5.12%.

Complex 5c. Yellow solid; mp $113{ }^{\circ} \mathrm{C}$; yield 78%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.25-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.45$ $(\mathrm{m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.75-5.20(\mathrm{~m}, 4 \mathrm{H}), 5.35-5.70(\mathrm{~m}, 3 \mathrm{H})$, $7.40(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.50-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 31.04,39.02,43.37,52.82,53.56$, $55.99,74.81,86.19,93.51,97.24,99.32,118.16,123.98,125.72$, 128.04, 135.10, 136.37, 141.91, 156.30, 206.18, 233.35; IR $\left(\mathrm{CHCl}_{3}\right): 1960,1860,1665 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Cr}$: C: $64.48, \mathrm{H}: 4.67$, Found C: $64.40, \mathrm{H}: 4.65 \%$.

Base catalysed equilibration of 3a and 5a

The complex (0.5 mmol) was dissolved in 5 mL of dichloromethane and treated with $10 \mathrm{~mol} \%$ DBU in dichloromethane at $0{ }^{\circ} \mathrm{C}$. The reaction was monitored by TLC. In all cases equilibrium was reached in about 2 hours. Work up involved removal of solvent, washing with water and extracting with dichloromethane. Dichloromethane was removed and residue was chromatographed to yield a pair of diastereomers. Ratio of diastereomers: $\mathbf{3 a - 3 a} \mathbf{a}^{\prime}=85: \mathbf{1 5} \mathbf{;} \mathbf{5 a - 5} \mathbf{a}^{\prime}=80: 20$.

Complex 3a'. Yellow solid; mp $82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $1.90-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80-$ $3.05(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.85-5.25$ $(\mathrm{m}, 4 \mathrm{H}), 5.45(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 5.81-6.05(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.45(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 28.36,29.88,35.53,38.08,51.52,55.96$, $73.59,85.35,86.68,93.53,96.02,105.31,117.31,126.89,127.48$, 128.73, 133.47, 137.15, 141.93, 146.88, 199.20, 233.58; IR $\left(\mathrm{CHCl}_{3}\right): 1960,1865,1660 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}$: C: 65.16, H: 4.97, Found C: $65.29, \mathrm{H}: 4.88 \%$.

Complex 5a'. Yellow solid; mp $96{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $1.92-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.85-$ $3.10(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.80-5.05$ $(\mathrm{m}, 4 \mathrm{H}), 5.55(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.60-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.20$ $(\mathrm{d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 7.15-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 1 \mathrm{H}), 8.05$ (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 28.49,29.42,29.87$, $38.29,40.63,52.63,55.77,73.71,85.36,94.64,99.29,106.20$, 117.29, 126.85, 127.67, 128.79, 133.55, 137.06, 142.66, 144.02, 199.29, 233.70; IR $\left(\mathrm{CHCl}_{3}\right): 1960,1860,1665 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Cr}: \mathrm{C}: 65.16, \mathrm{H}: 4.97$, Found C: 65.40, H: 4.99\%.

Attempted Hosomi-Sakurai reaction of enones 1a-c

To a solution of enone (1 mmol) in dichloromethane $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}, \mathrm{TiCl}_{4}$ (2 mmol) was added dropwise with stirring. After 30 minutes allylsilane (2.0 mmol) was added dropwise at that temperature. Reaction was monitored by TLC. There was no reaction after stirring for 12 hours at $-78^{\circ} \mathrm{C}$ followed by stirring at $-20^{\circ} \mathrm{C}$ for 8 hours. After usual workup, starting material was recovered ($80-90 \%$).

Acknowledgements

The authors thank Professor Jean Normant (Paris) for his interest in the work and for sharing his experience with dichloromethane as a solvent for Grignard reaction. One of us (SKM) would like to thank the Council of Scientific and Industrial Research, India, for the award of research fellowship.

References

1 For reviews on the properties and reactivities of arene tricarbonylchromium complexes see: (a) F. Rose-Munch and E. Rose, Curr. Org. Chem., 1999, 3, 445-467; (b) M. F. Semmelhack, in Comprehensive Organometallic Chemistry II, eds.E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, New York, 1995; Vol. 12, pp. 979-1015; (c) M. F. Semmelhack, in Comprehensive Organometallic Chemistry II, eds.E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, New York, 1995; Vol. 12, pp. 1017-1038; (d) S. G. Davies and T. D. McCarthy, in Comprehensive

Organometallic Chemistry II, eds. E. W. Abel, F. G. A. Stone, G. Wilkinson,Pergamon, New York, 1995, Vol. 12, pp. 1039-1070; (e) M. J. Morris, Iin Comprehensive Organometallic Chemistry II eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, New York, 1995, Vol. 5, pp. 471-549; (f) S. G. Davies and T. J. Donohoe, Synlett, 1993, 323-332; (g) S. G. Davies, S. J. Coote and C. L. Goodfellow, Adv. Met.-Org. Chem., 1991, 2, 1-57; (h) A. R. Pape, K. P. Kaliappan and E. P. Kündig, Chem. Rev., 2000, 100, $2917-$ 2940; (i) H.-G. Schmalz, S. Siegel, in Transition Metals for Organic Synthesis Vol. 1, eds. M. Beller and C. Bolm, Wiley-VCH, Weinheim, 1998, p. 550; (j) L. S. Hegedus, Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books, Sausalito, CA, 1999, Ch. 10; (k) F. Rose-Munch, V. Gagliardini, C. Renard and E. Rose, Coord. Chem. Rev., 1998, 178-180, 249-268; (l) A. Sarkar, S. Ganesh, S. Sur, S. K. Mandal, V. M. Swamy, B. C. Maity and T. S. Kumar, J. Organomet. Chem., 2001, 624, 18-25; (m) S. E. Gibson and E. G. Reddington, Chem. Commun., 2000, 12, 989-996; (n) A. C. Comely, S. E. Gibson and S. Sur, J. Chem. Soc., Perkin Trans. 1, 2000, 2, 109-124; (o) K. Kamikawa and M. Uemura, Synlett, 2000, 7, 938-949; (p) A. C. Comely and S. E. Gibson, J. Chem. Soc., Perkin Trans. 1, 1999, 3, 223-238; (q) M. Uemura, Organomet. News, 2000, 2, 34-38; (r) For a detail computational and experimental study of additions of electrophiles, nucleophiles and radicals to arene tricarbonylchromium complexes see: C. A. Merlic, M. M. Miller, B. N. Hietbrink and K. N. Houk, J. Am. Chem. Soc., 2001, 123, 4904-4918.

2 For recent examples, see: (a) C. A. Merlic and J. C. Walsh, J. Org. Chem., 2001, 66, 2265-2274; (b) K. Kamikawa, A. Tachibana, S. Sugimoto and M. Uemura, Org. Lett., 2001, 3, 2033-2036; (c) A. Pfletschinger, W. Koch and H.-G. Schmalz, New J. Chem., 2001, 25, 446-450; (d) B. C. Maity, V. M. Swamy and A. Sarkar, Tetrahedron Lett., 2001, 42, 4373-4376; (e) P. Del Buttero, C. Baldoli, G. Molteni and T. Pilati, Tetrahedron: Asymmetry, 2000, 11, 1927-1941; (f) W. H. Moser, K. E. Endsley and J. T. Colyer, Org Lett., 2000, 2, 717-719; (g) K. Kamikawa and M. Uemura, Synlett, 2000, 938-949; (h) H. Koide and M. Uemura, Chirality, 2000, 12, 352-359; (i) F. Rose-Munch, R. Chavignon, J.-P. Tranchier, V. Gagliardini and E. Rose, Inorg. Chim. Acta, 2000, 300-302, $693-$ 697; (j) T. Watanabe, M. Shakadou and M. Uemura, Inorg. Chim. Acta, 1999, 296, 80-85; (k) H.-G. Schmalz, C. B. de Koning, D. Bernicke, S. Siegel and A. Pfletschinger, Angew. Chem., Int. Ed., 1999, 38, 1620-1623; (l) H. Koide and M. Uemura, Tetrahedron Lett., 1999, 40, 3443-3446; (m) C. Baldoli, P. Del Buttero, D. Perdicchia and T. Pilati, Tetrahedron, 1999, 55, 14089-14096; (n) B. Caro, M. C. Senechal-Tocquer, F. Robin-Le Guen and P. LePoul, J. Organomet. Chem., 1999, 585, 43-52.

3 For recent examples, see: (a) B. Gotov and H.-G. Schmalz, Org. Lett., 2001, 3, 1753-1756; (b) S. E. Gibson and H. Ibrahim, Chem. Comтип., 2001, 12, 1070-1071; (c) S. Pache, C. Botuha, R. Franz, E. P. Kundig and J. Einhorn, Helv. Chim. Acta, 2000, 83, 2436-2451; (d) M. K. Mckay and J. R. Green, Can. J. Chem., 2000, 78, 1629 1636; (e) T. Hata, H. Koide and M. Uemura, Synlett, 2000, 8, 1145 1147; (f) H. Koide and M. Uemura, Chirality, 2000, 12, 352-359; (g) T. Hata, H. Koide, N. Taniguchi and M. Uemura, Org. Lett., 2000, 2, 1907-1910; (h) H. Ratni, B. Crousse and E. P. Kündig, Synlett, 1999, 626-628; (i) B. Schnell, G. Bernardinelli and E. P. Kündig, Synlett, 1999, 348-350; (j) A. Quattropani, G Bernardinelli and E. P. Kündig, Helv. Chim. Acta, 1999, 82, 90-104; (k) N. Taniguchi, T. Hata and M. Uemura, Angew. Chem., Int. Ed., 1999, 38, 1232-1235; (l) A. Ariffin, A. J. Blake, R. A. Ewin, W. S. Li and N. S. Simpkins, J. Chem. Soc., Perkin Trans. 1, 1999, 3177-3189; (m) S. G. Davies, T. Loveridge, M. Fatima, C. C. Teixeira and J. M. Clough, J. Chem. Soc., Perkin Trans. 1, 1999, 3405-3412; (n) H.-G. Schmalz, C. B. De Koning, D. Bemicke, S. Siegel and A. Pfletschinger, Angew. Chem., Int. Ed., 1999, 38, 1620-1623; (o) T. Watanabe, M. Shakadou and M. Uemura, Inorg. Chim. Acta, 1999, 296, 80-85; (p) N. Tanaguchi, T. Hata and M. Uemura, Angew. Chem., Int. Ed., 1999, 38, 1232-1235; (q) H. Koide and M. Uemura, Tetrahedron Lett., 1999, 40, 3443-3446; (r) F. Rose-Munch, V. Gagliardini, A. Perrotey, J.-P. Tranchier, E. Rose, P. Mangeney, A. Alexakis, T. Kanger and J. Vaissermann, Chem. Commun., 1999, 20, 2061-2062.
4 For recent examples, see: (a) G. B. Jones and M. Guzel, Tetrahedron Lett., 2000, 41, 4695-4699; (b) J. P. Tranchier, R. Chavignon, D. Prim, A. Auffrant, Z. F. Plyta, F. Rose-Munch and E. Rose, Tetrahedron Lett., 2000, 41, 3607-3610; (c) D. Vasen, A. Salzer, F. Gerhards, H. J. Gais, R. Sturmer, N. H. Bieler and A. Togni, Organometallics, 2000, 19, 539-546; (d) B. J. Chapman, G. B. Jones and W. T. Pennington, J. Chem. Crystallogr., 1999, 29, 383-389; (e) C. Bolm and K. Muniz, Chem. Soc. Rev., 1999, 28, 51-59; (f) S. U. Son, H. Y. Jang, J. W. Han, I. S. Lee and Y. K. Chung, Tetrahedron: Asymmetry, 1999, 10, 347-354.

5 For recent examples, see: (a) T. Watanabe, M. Shakadou and M. Uemura, Synlett, 2000, 8, 1141-1144; (b) K. Kamikawa, T. Watanabe, A. Daimon and M. Uemura, Tetrahedron, 2000, 56, 2325-2337; (c) H. Ratni and E. P. Kündig, Org. Lett., 1999, 1, 1997-1999; (d) D. Horstermann, H.-G. Schmalz and G. KociokKohn, Tetrahedron, 1999, 55, 6905-6916; (e) G. B. Jones, M. Guzel and J. E. Mathews, Tetrahedron Lett., 2000, 41, 1123-1126.
6 For rare examples of endo selectivity in arene chromium functionalization see: (a) S. Sur, S. Ganesh, D. Pal, V. G. Puranik, P. Chakrabarti and A. Sarkar, J. Org. Chem., 1996, 61, 8362-8363; (b) S. K. Mandal and A. Sarkar, J. Org. Chem., 1999, 64, 2454-2458; (c) V. M. Swamy, S. K. Mandal and A. Sarkar, Tetrahedron Lett., 1999, 40, 6061-6064; (d) S. Ganesh, K. M. Sathe, M. Nandi, P. Chakrabarti and A. Sarkar, J. Chem. Soc., Chem. Commun., 1993, 224-226; (e) A. Fretzen, A. Ripa, R. Liu, G. Bernardinelli and E. P. Kundig, Chem. Eur. J., 1998, 4, 251; (f) F. C. Pigge, S. Fang and N. P. Rath, J. Organomet. Chem., 1998, 559, 131; (g) H.-G. Schmalz and H. Jope, Tetrahedron, 1998, 54, 3457-3464; (h) F. Dehmel and H.-G. Schmalz, Org. Lett., 2001, 3, 3579-3582.

7 Addition of enolsilane to 2-arylidene-1-tetralone- $\mathrm{Cr}(\mathrm{CO})_{3}$ complex in presence of TiCl_{4} yields the same exo-adduct as the one obtained by fluoride-mediated addition: S. Sur, Ph.D. Dissertation, University of Pune, 1997. Since the oxygen atom of enolsilane is likely to precomplex with TiCl_{4} during such an addition, this observation implies that TiCl_{4} does not bind to the oxygen of the metal carbonyl groups to promote endo-selectivity.
8 Dichloromethane was used as solvent since it has been widely used in TiCl_{4} mediated reactions-it was also expected to maximize the effect of Lewis acid complexation with carbonyl function. For example, see: (a) H. G. Viehe and M. Reinstein, Berichte, 1962, 95, 2557; (b) A. Bongini, G. Cardillo, A. Mingardi and C. Tomasini, Tetrahedron: Asymmetry, 1996, 7, 1457.
9 Excess TiCl_{4} was used to ensure formation of a $1: 1$ complex with substrate, see: S. E. Denmark and N. G. Almstead, J. Am. Chem. Soc., 1993, 115, 3133 Also see S. E. Denmark and N. G. Almstead, Tetrahedron, 1992, 48, 5565 and references 12 and 13 cited therein.
10 Strong Lewis acidity of TiCl_{4}, however, promoted a side-reactionabout 10% diallylated product was always obtained. This undesired product became the only isolable product when excess allyllithium was used. In a control experiment when both the diastereomers $\mathbf{2 a}$ and $\mathbf{4 a}$ were treated separately with TiCl_{4} and allyllithium under identical reaction conditions, the same diallylated product 7 formed, possibly via a common cationic intermediate 6 stabilized by chromium. Rate of formation of $\mathbf{7}$ from both $\mathbf{2 a}$ and $\mathbf{4 a}$ is also identical. Stereochemical details of 7 and similar reaction with other nucleophiles are being studied.

excess allyllithium

J. Chem. Soc., Perkin Trans. 1, 2002, 669-674

11 (a) X-Ray crystal structure of compound 2a $\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{CrO}_{5}\right)$, wa solved using Mo-K α radiation at $T=120 \mathrm{~K}$; crystal data: tetragonal space group $P 4_{2} / n, a=18.8459$ (5) $\AA, c=13.2143$ (3) $\AA, v=4693.3$ (2) $\AA^{3}, Z=D_{x}=1.383 \mathrm{Mg} \mathrm{m}^{-3} ;$ Data collections: 14072 measured reflections, 7254 independent reflections $\theta_{\max }=31.0^{\circ}$; Refinement: $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$, parameters $287, \Delta_{\max }=0.54 \mathrm{e}^{-3} \AA^{-3}$; b) X-Ray crystal structure of compound $4 \mathrm{a}\left(\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{CrO}_{5}\right)$, was solved using Mo-K α radiation at $T=301$ (2) K ; crystal data: triclinic space group $P-1, a=11.3514$ (6) $\AA, b=13.8365$ (6) $\AA, c=14.2539$ (5) $\AA, v=$ 2082.32 (16) $\AA^{3}, Z=4 D_{x}=1.411 \mathrm{Mg} \mathrm{m}^{-3} ;$ Data collections: measured reflections 6531, independent reflections 5517, $\theta_{\max }=$ 56.74°; Refinement: $R[I>2 \sigma(I)]=0.035$, parameters $56, \Delta \rho_{\max }=$ $0.227 \mathrm{e}_{\AA^{-3}}$. These structures also corroborate the assigned conformation of starting materials depicted in Scheme 1. The authors thank Professor Frank R. Fronczek (2a) and Professor Karl S. Hagen (4a) for crystal structure solution. Details of structure determination will be published elsewhere.
12 Reviews on anionic oxy-Cope rearrangement: (a) L. A. Paquette, Tetrahedron, 1997, 53, 13971; (b) S. R. Wilson, Org. React., 1993 43, 93; Anion assisted sigmatropic rearrangement in (c) R. K. Hill, Cope, oxy-Cope and anionic oxy-Cope rearrangements. In Comprehensive Organic Synthesis; eds. B. M. Trost, and I. Fleming, Pergamon, Oxford, 1991, vol. 5, p. 785; (d) In the case of a structurally related substrate, we have recently established that anion-assisted oxy-Cope rearrangement proceeds along the same stereoface of the molecule as the allyl group was first appended, by
solving the crystal structure of the substrate as well as the product: S. Sur, S. K. Mandal and A. Sarkar, Indian J. Chem. Sect. B, 2001, 40, 1063-1071.
13 For an interesting article, see: D. Lednicer, Adv. Org. Chem., 1972, 8, 179-293.
14 (a) S. Ganesh and A. Sarkar, Tetrahedron Lett., 1991, 32, 1085; (b) Ph. D. dissertation of S. Ganesh, 1993, University of Pune, India.
15 The configuration at C-2 of the final products has not been established unambiguously. The relatively unstable complexes did not provide crystals suitable for structure solution in spite of repeated attempts. However, isolation of all relevant diastereomers from the equilibration studies clearly imply that products $\mathbf{3 a - c}$ and 5a-c differ in the relative configuration at $\mathrm{C}-3$, validating the arguments on face selectivity of allyl addition. We thank the reviewers for helpful comments.
16 S. K. Chowdhury, U. Samanta, V. G. Puranik and A. Sarkar, Organometallics, 1997, 16, 2618.
17 S. Sur, S. Ganesh, V. G. Puranik and A. Sarkar, J. Chem. Soc., Perkin Trans. 1, 1998, 977-982.
18 For preparation of complexed aldehydes see: (a) A. SolladieCavallo, G. Solladie and E. Tsamo, J. Org. Chem., 1979, 44, 4189; (b) S. K. Mandal and A. Sarkar, J. Org. Chem., 1998, 63, 1901.

19 For the preparation of allyllithium: Encyclopedia of Reagents for Organic Synthesis, ed. L. A. Paquette, John Wiley, New York, 1995, Vol. 1, p. 110.

[^0]: \dagger Present address: Department of Chemistry, University of Utah, Salt Lake City, USA.
 \ddagger The IUPAC name for 1-tetralone is 3,4-dihydronaphthalen-1 $(2 \mathrm{H})$ one.

